Alert.png The wiki is deprecated and due to be decommissioned by the end of September 2022.
The content is being migrated to other supports, new updates will be ignored and lost.
If needed you can get in touch with EGI SDIS team using operations @

Difference between revisions of "FedCloudLOFAR"

From EGIWiki
Jump to navigation Jump to search
Line 26: Line 26:
* Number of CPUs: At least 2 per instance.|
* Number of CPUs: At least 2 per instance.|
FCUC_Files =
FCUC_Files =
* [ LOFAR radio-telescope web site]
* [ LOFAR radio-telescope web site]
* [ AMIGA4GAS project web site]
* [ AMIGA4GAS project web site]
* [ COMPSs] high-level tool|  
* [ COMPSs] high-level tool|  

Revision as of 18:42, 23 December 2014

General Information

  • Status: Preparatory
  • Start Date: 06/10/2014
  • End Date: -
  • contact: Diego Scardaci /, Enol Fernandez /
  • External contact: José Sabater Montez /, Daniele Lezzi /

Short Description

This project aims to integrate calibration, analysis and modelling pipelines of radio-astronomy data into a cloud infrastructure. It is developed jointly by users of the [ LOFAR] radio-telescope and members of the AMIGA4GAS project.

A cloud infrastructure like the EGI Federated Cloud provides:

  • flexibility to develop innovative processing pipelines;
  • a powerful frame for parallel processing pipelines and workflows;
  • the advantage of the elastic on-demand resource consumption.

Use Case

Development of a calibration pipeline for LOFAR data. The calibration of data from the radio-interferometer LOFAR requires a high capacity of storage and parallel processing. The software -relatively difficult to install and under heavy development- will be first installed into a custom image. Several configurations of virtual clusters will be used to run and profile different calibration pipelines. LOFAR users would be able to use, at a later stage, the best configuration and pipeline for the calibration of the data.

The community would like to use the COMPSs high-level tool to port the application on the EGI Federated Cloud.


  • Storage: about 3 TB for the tests.
  • Memory: possibility to launch instances with as much memory as possible. The amount of available memory will limit the size and resolution of the final LOFAR images. A full resolution image of 20000x20000 pixels would require about 64 GB of memory.
  • Number of instances: At least three instances, one control node and two working nodes.
  • Number of CPUs: At least 2 per instance.

Additional Files