

# Towards the Big Data Strategies for EISCAT 3D

Yin Chen

Y.Chen@cs.cardiff.ac.uk





# Opportunities for new Research

### EISCAT 3D New Measurement Capabilities

- Instantaneous, adaptive control of beam positions
- Simultaneous multiple beams/interlaced beams
- High-resolution coding of polarisation, phase and amplitude
- Aperture synthesis imaging small-scale 3D imaging(subbeam-width)
- Multi-beam volume imaging large-scale 3D imaging
- Full-profile vector measurements large/small-scale 3D vector imaging
- High-speed object tracking
  - Estimated for 3 MW Tx: improvement at least x 10 better



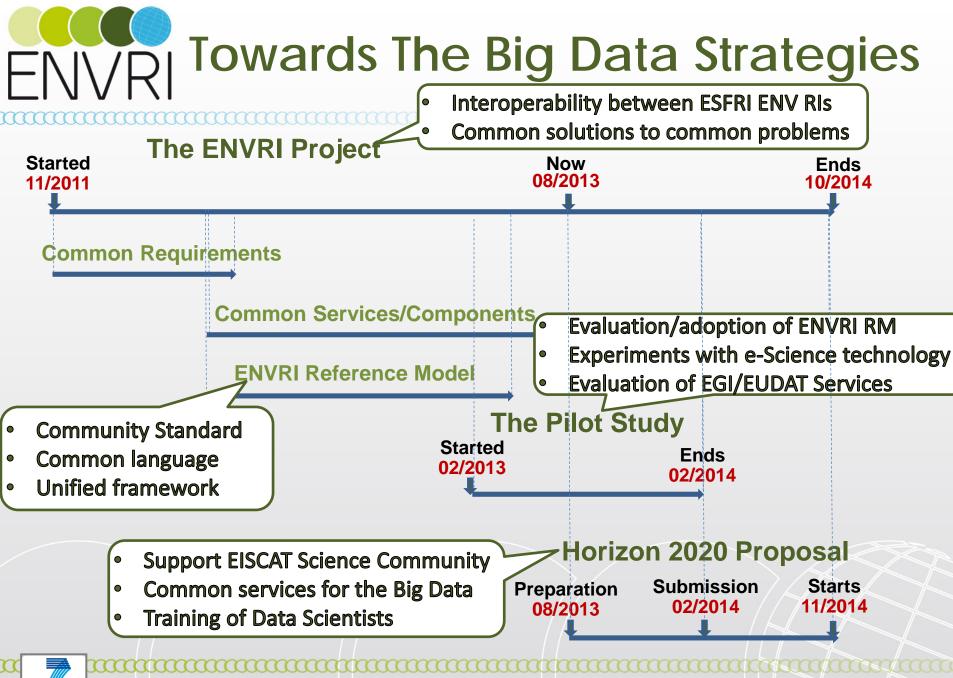


## Opportunities for new Research

#### EISCAT 3D e-Infrastructure capabilities

- Real-time data access
- Virtual research environment
- Support long-tail scientists
  - Intelligent filter
  - Advanced discovery by signatures/patterns
  - User specific analysis/mining/processing
  - Support discovery of "unknowns"
  - Integration of external resources/global data sharing
- New Applications, e.g.,
  - Space weather
  - Visualisation




Project number: 283465



# The Big Data Challenges (3+1Vs)

- Volume.
  - 5PB/year in 2018, 40PB/year in 2023
  - Operate for 30 years, data products to be stored for > 10 years
- Velocity.
  - Each antenna: 120MB/s
  - 160 \* antenna group (100 antennas): 2 Gbit/s/group
  - 5\* Ringbuffer: each 125 TB/h
- Variety.
  - Measurements: different versions, formats, replicas, external sources ...
  - System information: configuration, monitoring, logs/provenance ...
  - Users' metadata/data: experiments, analysis, sharing, communications ...
- Value.
  - How to discover meaningful insights from low-value-density data
  - Needs new approaches to the deep, complex analysis e.g., machine learning, statistical modelling, graph algorithms etc.

Go beyond traditional approaches to the space physics





# Goals for the Pilot Study

- Early adoption of the ENVRI Reference Model
  - Analysis and architecture design
  - Organising collaborative design activates
- Experiments with e-Science approaches
  - Distributed data archive
  - High throughput computing for processing
- Evaluation of the usability of EGI/EUDAT services
  - Within the EISCAT 3D e-Infrastructure
  - In supporting the EISCAT science community

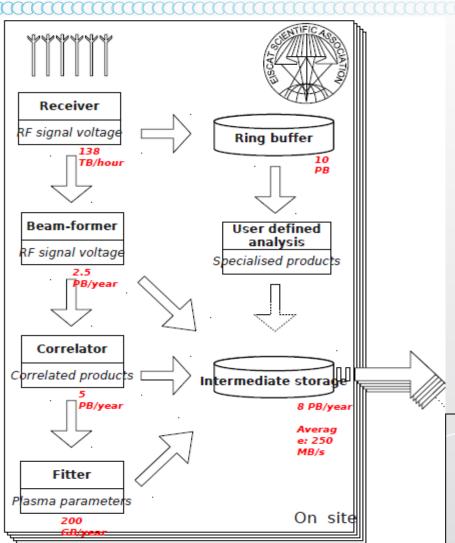




# E-Science Technologies

#### **€** EGI

- A Europe-wide federation of national computing & storage resources.
- ~350 resource centres from the NGIs, across 55 countries
- 370,000 logical CPUs, 248 PB disk, 176 PB of disk capacity


#### EUDAT

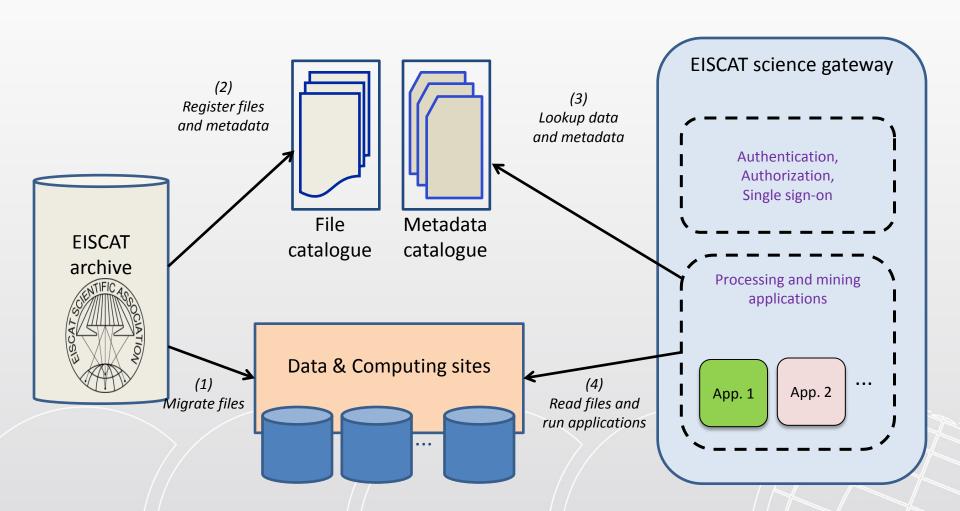
- European collaborative data infrastructure for e-Science
- 23 partners from 13 countries 15 user communities
- Offers storage, computing, metadata services to large research communities (e.g., ESFRI)





### **EISCAT-3D Data Acquisition**




- 5 Types of data
  - Raw antenna (group) data (138 TB/h)
  - Voltage beam formed data
    (2.5 PB/year)
  - Correlated products (5 PB/year)
  - Fitted data (200GB/year)
  - (User) Specialised Products
- Numbers are per site, 5 sites in total
- The yearly rates are based on 24/7 operation
- 10% of the time with full power
- 90% of the time with 10% power,
- In total 20% of average maximum rates



12/08/2013



### **EISCAT-3D Data Curation**







### **EISCAT-3D Data Curation**

- EGI (Grid) Services, e.g.,
  - Metadata catalogue -- AMGA
  - File catalogue -- LFC
  - Storage element
  - File Transfer Service
  - Portal for application development & hosting (e.g. SCI-BUS)
  - Access control

#### EUDAT Services

- Safe Replication
- Data Staging (moving large data)
- Simple Store (uploading and sharing data)
- Metadata (including a portal for the service)
- To come: Dynamic Data, Annotating Data etc.

Usable solution with compromises

12/08/2013 Project number: 283465

10



# Data Access & Processing


- Unlock the hidden value of the big data
  - Discovery & Access
    - Search through all levels of data, e.g.,
      - Find specific signatures
      - Plasma features, meteors, space debris, astronomical features
      - Automatic switching between high and low power modes
    - Search for other ISRs data resources
  - Processing
    - User specified analysis/correlation process
    - Visualisation



### Requirements Collection

- For Scientists -- What applications do you use/need?
  - Search
  - Analysis/process,
  - **Visualise**
  - In any other way manage/ interpret the data.
- For Data manager -- How data are managed?
  - **Structure**
  - **Used file formats**
  - Metadata structure
  - **Needs for replication**
  - User base,
  - Usage patterns
  - Accessibility/availability/security





- Objective1: e-Infrastructure support to EISCAT Community
  - Real-time data access
  - Community driven co-design
  - Virtual research environments
  - Support of long tail of scientist
  - Global data sharing and integration
- Objective2: Common Services for Big Data
  - Identify common requirements, challenging issues, state-of-theart design experiences, e.g., LOFAR, LHC, SKA, etc.
  - Proof of concepts of data infrastructure-enabling software
- Objective3: Training of Data Scientists
  - A new data-centric way of organising research activities
  - New approaches to solve problems

Lead to significant scientific breakthroughs



#### Widen Discussions

• 16.20pm: COOPEUS/ENVRI/EGI open forum & splinter group meetings

### Requirements Collection

- From scientists: <a href="http://tinyurl.com/EISCAT-Sci">http://tinyurl.com/EISCAT-Sci</a>
- From data managers: <a href="http://tinyurl.com/EISCAT-DM">http://tinyurl.com/EISCAT-DM</a>





# **Involved Organisations**

- Cardiff University, UK
- CNRS, France
- CSC, Finland
- EGI.eu, The Netherlands
- EISCAT, Sweden
- EUDAT (via its partners)
- University of Edinburgh, UK



CSC









15



