
GOCDB Grid Topology Information System
David.meredith@stfc.ac.uk (corresponding author)
John.Casson@stfc.ac.uk
George.Ryall@stfc.ac.uk
James.McCarthy@stfc.ac.uk

Contents
GOCDB Grid Topology Information System .. 1

Executive Summary ... 2

Domain Model Overview .. 3

Multiple Projects and Scope Tags ... 5

Clear Separation of Concerns.. 5

The Role Model and Permissions .. 6

Custom Properties Extensibility Mechanism .. 7

Programmatic Interface (PI) .. 8

Authentication Abstractions ... 8

Useful Links ... 10

Appendix 1 – GOCDB Entity Relationship Diagram (ERD) ... 11

mailto:David.meredith@stfc.ac.uk
mailto:John.Casson@stfc.ac.uk
mailto:George.Ryall@stfc.ac.uk
mailto:James.McCarthy@stfc.ac.uk

Executive Summary
GOCDB is a Configuration Management Database (CMDB1) for recording and managing assets in e-

infrastructure projects. It defines a number of topology objects including projects, admin-domains,

sites, services, service-groups, service-endpoints, service-downtimes, users and roles. GOCDB is the

central CMDB for the EGI and EUDAT projects. The tool provides a web portal for editing information

and a REST style programmatic interface (PI) for querying data in XML. Relationships between

different objects are defined using a well constrained relational schema that closely resembles a

sub-set of the GLUE 22 information model. A comprehensive role-based permissions model controls

user permissions. Importantly, projects can self-manage their own users; users make requests for

roles over target objects and users that already hold the necessary role(s) can accept or reject those

role requests.

A flexible tag-cloud mechanism allows objects to be tagged with one or more ‘scope-tags’. This

allows resources to be tagged and grouped into multiple categories without duplication of

information – this is essential to maintain the integrity of topology information across different

infrastructures and projects. Different scope tags can be defined when necessary, for example, tags

can be used to reflect different projects, infrastructure groupings and sub-projects. Resources can be

flexibly ‘filtered-by-tag’ when querying for data via the programmatic interface (PI).

Core objects can also be extended using a powerful extensibility mechanism that allows custom key-

value pairs to be added to those objects. These objects can then be flexibly ‘filtered-by-custom-

property’ when selecting/ querying data.

An authentication abstraction layer has been integrated to allow different authentication

mechanisms to be supported using a pluggable ‘AuthenticationProvider’ interface. Requests are

authenticated using extensible ‘Authentication’ tokens. Implementations are provided for x509,

SAML2 and username/password.

GOCDB supports multiple databases out-of-the-box through the use of the Doctrine3 Object

Relational Mapping library (ORM). A comprehensive DBUnit test suite ensures out of the box

compatibility with Oracle and MySQL. Other databases such as Postgres should also be supported via

Doctrine with a change to the DB connection settings. GOCDB provides an administration interface

for common admin tasks. The codebase uses standards and established design patterns including

MVC and ORM to provide a stable, easily customisable product.

1
 http://en.wikipedia.org/wiki/Configuration_management_database

2
 http://www.ogf.org/documents/GFD.147.pdf

3
 http://www.doctrine-project.org/projects/orm.html

http://en.wikipedia.org/wiki/Configuration_management_database
http://www.ogf.org/documents/GFD.147.pdf
http://www.doctrine-project.org/projects/orm.html

Domain Model Overview
The GOCDB domain closely resembles a sub-set of the GLUE 2 Grid entity model. The GOCDB core

entities are described below and their main relationships are summarised in Figure 1. The full entity

relationship diagram (ERD) is provided in Appendix1. Since the structure of the GOCDB data model

closely resembles GLUE 2, especially in terms of the entities and their relationships, we expect the

structure of the data model to remain largely static. However, it is expected that new attributes will

be added to the existing entities to populate more of the GLUE 2 attributes.

 OwnedEntity: An abstract super class that allows user Role objects to be linked to objects

that extend OwnedEntity. This currently includes Project, NGI, Site and ServiceGroup.

 Project (extends OwnedEntity): A Project is a generic entity and can be defined multiple

times in GOCDB. A Project can aggregate zero or more ‘NGI’ objects and is used to cascade

Project level roles over its child NGIs.

 NGI (extends OwnedEntity): An ‘NGI’ is an EGI specific term but it simply reflects an

administrative domain, corresponding to a GLUE 2 AdminDomain. An NGI aggregates zero

or more Sites and can belong to one or more Projects. Users with roles over an NGI can

have different permissions cascading over its child Sites. The GOCDB team have experience

removing references to “NGI”s and other EGI specifics while collaborating with EUDAT on

their GOCDB instance.

 Site (extends OwnedEntity): A Site represents a physical site with a location. A Site hosts

zero or more Services. A Site also corresponds to a GLUE 2 AdminDomain. Users with roles

over the Site have various permissions over a Site’s services.

 ServiceGroup (extends OwnedEntity): A ServiceGroup is also known as a ‘Virtual-Site’. It is

used to group existing services that are physically distributed across multiple hosting sites

into a virtual service grouping. Users with roles over a ServiceGroup do not have permissions

over the aggregated services. Rather, a user must apply for a role over the service’s hosting

Site.

 Service: Represents an instance of a specific service and has a defined service-type enum

value (e.g. ‘org.service.type.X’ or ‘org.service.type.Y’). GOCDB does not currently distinguish

between ComputingService and StorageService like GLUE 2. A Service defines zero or more

Endpoint.

 ServiceEndpoint: (EndpointLocation). A ServiceEndpoint defines a network location/address

for a service. An endpoint can be linked to zero or more Downtimes.

 Downtime: A Downtime object can be linked to one or more service endpoints. A key

difference between GOCDB and GLUE 2 is that in GOCDB, a service endpoint can be linked to

zero or many downtimes. This is required so that a history of past and pending downtimes

can be recorded. In contrast, a GLUE 2 service can only publish a single set of downtime

information for a particular service instance (usually the current or future downtime).

 User: Represents a user account. A User object owns one or more Role objects.

 Role: A Role joins and User and an OwnedEntity. It is used to define user permissions over

the joined OwnedEntity. A user can own many Roles.

 Scope: A Scope entity defines a tag/label that can be associated to any entity that defines

the ‘IScopedEntity’ interface. Entities implementing this interface include Site, NGI, Service

(and by extension Downtime), ServiceGroup and Project.

Figure 1. The GOCDB domain model (showing simplified sub-set) closely resembles a sub-set of the

GLUE 2 Grid model, especially in terms of the entities and their corresponding relationships. To

support GLUE 2, new attributes will need to be added to the existing GOCDB entities as/when

required.

Multiple Projects and Scope Tags
Scope tags help organise resources into different categories and groupings. New tags can be added

on request allowing users to tag their own resources with one or more scope-tags as necessary. The

GOCDB admins control which scope tags are made available to avoid proliferation of tags (user

defined tags are reserved for the extensibility mechanism). As shown in Figure 2, a site’s scope list

could aggregate all of the scopes defined by its child services. In doing this, the site scope list

becomes a union of its service scopes plus any other site specific tags defined by the site. By

defining scope tags, resources can be ‘filtered-by-scope-tag’ when querying for data in the PI using

the ‘scope’ and ‘scope_match’ parameters (see the section on PI for details).

Clear Separation of Concerns

 It is important to understand that scopes and projects are distinct:

o Projects are used to cascade roles and permissions over child objects

o Scope-tags are used to filter resources into flexible categories/groupings

 Scope tags can be created to mirror the projects. For example, assuming two projects (e.g.

EGI.eu and EU-DAT), two corresponding tags may be defined (‘EGI’ ‘EUDAT’).

 In addition, it is also possible define additional scopes for finer grained resource filtering e.g.

‘CLIP’ and ‘EGI_TEST’.

 The key benefit: A clear separation of concerns between cascading permissions and

resource filtering.

Figure 2. Sites and Services can be associated with one or more scope tags (other entities can also be
tagged as required). In this example, the hosting site aggregates all of the scope tags defined by its

child services. In doing this, the site scope list effectively becomes a union of the service scope tags +
additional site specific scopes.

The Role Model and Permissions
 A user can request different Roles over different OwnedEntities.

 A Role object has a status of GRANTED or PENDING and links a User object to an

OwnedEntity (see Figure 3).

 OwnedEntity is an abstract super class. Implementations currently include Project, Site, NGI

and ServiceGroup.

 Role requests can be granted or revoked by users who already own the necessary roles over

the specified OwnedEntity, or by users who have higher level roles over parent objects. The

GOCDB administrators bootstrap this process by granting the initial role requests. Projects

and users then subsequently manage their own role requests.

 A Role has a defined type. Different role types are used to define varying permissions, each

enabling different ‘Actions’ over a target OwnedEntity. Role types include ‘Site

Administrator,’ ‘Site Ops Manager,’ ‘NGI Security Officer,’ ‘Chief Operations Officer’ etc (not

all listed here).

 Current Actions include EDIT_OBJECT, DELETE_OBJECT, GRANT_ROLE, REVOKE_ROLE,

NGI_ADD_SITE (not all Actions are listed here).

 The role model is flexible and can be customised by adding new Role types and defining new

Actions.

 The role model is simple to use by invoking the ‘authoriseAction()’ method and passing the

requesting user and the required action that affects the target OwnedEntity, e.g.

‘authoriseAction(Action::EDIT_OBJECT, $site, $user)’.

Figure 3. GOCDB Role model (simplified)

Custom Properties Extensibility Mechanism
Core objects can be extended using an extensibility mechanism that allows custom key-value pairs to

be added to those objects. This allows flexible ‘filter-by-custom-property’ when selecting resources.

For example, in the example below you could query for all service endpoints having a

GLUE2EndpointCapability of ‘jobSubmission’ using:

 get_service_endpoint&extensions=(GLUE2EndpointCapability=jobSubmission)

Figure 4. Custom extension properties can be defined on core entities including Sites, Services and

ServiceEndpoints. In this example, three custom properties are defined.

Within EGI Inspire, the custom extension properties have been used to advertise the pricing of
resources using pre-agreed key-names such as ‘P4U_Pilot_Grid_CPU,’ ‘P4U_Pilot_Cloud_Wall’ and
‘P4U_Pilot_VAT’. Custom properties allow folksonomy building and rapid prototyping for future
extensions to the domain model.

Programmatic Interface (PI)
 GOCDB provides a comprehensive REST style programmatic interface (PI4) for querying the

data in XML. Methods include; get_downtime, get_site, get_ngi, get_service_endpoint,

get_site_contacts, get_service_types (not all methods are listed here).

 Queries can be refined by passing different URL parameters to narrow results, e.g.

‘get_site&sitename=RAL_LCG2’ to return just the specified site or ‘get_site&country=UK’ to

return all UK sites.

 A number of core methods support the ‘scope’ and ‘scope_match’ parameters. The ‘scope’

parameter is used to specify a comma separated list of scope tags, and the ‘scope_match’

parameter is used to specify the value ‘any’ or ‘all’ (‘any’ means match all resources that

define any of the specified scope tags, ‘all’ means only match those resources that define all

of the specified scope tags). For example:

o ‘get_service_endpoint&scope=EGI,CLIP,PROJX&scope_match=any’ (return all

services that define either EGI, CLIP and/or PROJX scope tags)

o ‘get_site&scope=EGI,EUDAT&scope_match=all’ (return all sites that define both EGI

and EUDAT scope tags)

 A number of core methods support the ‘extensions’ property to allow results to be filtered

by custom extension properties. The value part of a (k=v) pair can be omitted if filtering by

value is not required (i.e. '(somekey=)' means select all resources that define the 'somekey'

property with any value. (k=v) pairs can be optionally prefixed with one of following

operators: AND, OR, NOT. Example where CPU_HS01_HOUR and CPU_HS02_HOUR are

custom properties:

get_service_endpoint&extensions=(CPU_HS01_HOUR=1)OR(CPU_HS02_H

OUR=2)

Authentication Abstractions
GOCDB includes core authentication abstractions to facilitate the plug-in of different user

authentication mechanisms such as x509 certificates and SAML2 assertions. These core abstractions

have been inspired by the Spring Security 3 framework (disclaimer: in no way is the GOCDB security

module a full implementation of Spring Security 35, rather, it is a simplification).

In brief (and summarised in Figures 5 and 6):

 Client code access the FirewallComponentManager and selects a FirewallComponent for the

current page request.

 The ISecurityContextService is used to store the users IAuthToken in HTTP session so that re-

authentications are not necessary across different page requests (this requires cookies are

enabled in the browser).

 The IAuthenticationProvider interface authenticates the user if their IAuthToken is null.

 The IUserDetailsService abstracts the local credential store (e.g. a local database that stores

user accounts identified by certificate DN or username).

4
 https://wiki.egi.eu/wiki/GOCDB/PI/Technical_Documentation

5
 http://docs.spring.io/spring-security/site/index.html

https://wiki.egi.eu/wiki/GOCDB/PI/Technical_Documentation
http://docs.spring.io/spring-security/site/index.html

The authentication module does not perform authorisation, this is delegated to the role model. The

EGI implementation uses x509 and SAML2 Authentication tokens. There is plenty of scope to further

refine and improve the authentication abstractions for use in different projects.

Figure 5. Core abstractions in the authentication module

Figure 6. Sample usage of the authentication abstractions

Useful Links

SRC: https://github.com/GOCDB/gocdb

GOCDB Production EGI release: https://goc.egi.eu

GOCDB Primary failover: https://goc.dl.ac.uk

GOCDB Wiki and user documentation: https://wiki.egi.eu/wiki/GOCDB_Documentation_Index

Future Developments: https://wiki.egi.eu/wiki/GOCDB/Release4/Development

Programmatic Interface doc: https://wiki.egi.eu/wiki/GOCDB/PI/Technical_Documentation

https://github.com/GOCDB/gocdb
https://goc.egi.eu/
https://goc.dl.ac.uk/
https://wiki.egi.eu/wiki/GOCDB_Documentation_Index
https://wiki.egi.eu/wiki/GOCDB/Release4/Development
https://wiki.egi.eu/wiki/GOCDB/PI/Technical_Documentation

Appendix 1 – GOCDB Entity Relationship Diagram (ERD)

