Document title
Organizational unit
Organization

Date of creation
Last modified

Testers

QosCosGrid 2.6.1 middleware final security audit results
Wroclaw Centre for Networking and Supercomputing (WCSS)
Wroclaw University of Technology, Poland
21.02.2012
18.04.2012

Bartlomiej Balcerek, Maciej Kotowicz

1. Preface

The QosCosGrid (QCG) middleware is an integrated system offering advanced job and resource
management capabilities developed in Poznan Supercumputing and Networking Center. By
connecting many distributed computing resources together, QCG offers highly efficient mapping,
execution and monitoring capabilities for variety of applications, such as parameter sweep,
workflows, MPI or hybrid MPI-OpenMP. Thanks to QosCosGrid, large-scale applications, multi-
scale or complex computing models written in Fortran, C, C++ or Java can be automatically
distributed over a network of computing resources with guaranteed QoS. The middleware provides
also a set of unique features, such as advance reservation and co-allocation of distributed computing
resources.

Wroclaw Centre for Networking and Supercomputing (WCSS) acts as a Computer Security
Incident Response Team (CSIRT) for National Grid Initiative. WCSS security team has identified a
number of serious vulnerabilities in widely used Open Source and commercial software, in
particular in grid middleware, e.g: CVE-2011-2193, CVE-2011-2907. A number of next CVE
requests are pending at this moment (i.e. PBSPro remote root vulnerability and Maui Scheduler
authorization bypass).

WCSS conducted a thorough security test procedure (security audit) of QCG suite. The procedure
was iterating, i.e. after full security check a list of security flaws was sent to authors, which issue
next software version as a input to next security tests. This report concerns final version of QCG
middleware which is 2.6.1.

Although during the intermediate test steps a number of security flaws was found, the final versions
of QCG is considered to be secure and could by recommended to use in EGI infrastructure.

2. Testbed

For testing purposed two identical testbeds were prepared. Each of the systems was a virtual 64 bit
machine of hardware configuration:

* 2 x Intel(R) Xeon(R) CPU X3220 @ 2.40GHz
« 1GBRAM
* 4GB disk space

Each machine was operating on Scientific Linux SL release 5.6 (Boron). Kernel and essential
packages version follows:

* Linux 2.6.18-274.12.1.el5

* globus-gsi-proxy-ssl-2.3-3

* globus-gsi-openssl-error-0.14-8
* globus-gsi-callback-2.8-2

* globus-callout-0.7-8

* globus-openssl-5.1-2

* globus-common-11.6-5

* globus-gsi-sysconfig-3.2-1

+ globus-gsi-cert-utils-6.7-2

* globus-gsi-credential-3.5-3

* globus-gssapi-gsi-7.8-1

¢ globus-gss-assist-5.10-1

« globus-libtool-1.2-4

* globus-openssl-module-1.3-3

* globus-gsi-proxy-core-4.7-2

» globus-proxy-utils-3.10-1

* openssl-0.9.8e-12

* qcg-comp-client-2.6.1-8.x86_64
* qcg-comp-schemas-2.6.1-8.x86_64
* qcg-comp-2.6.1-8.x86_64

* qcg-openmpi-1.3.1-2.x86_64

+ qcg-ntf-2.6.1-1.x86_64

* (cg-core-2.6.1-3.x86_64

* qcg-dep-1.0.1-2.x86_64

3. Tools and methodology

A two different approaches to find security flaws were applied. One approach was static code
analysis, the second consisted of number of dynamic tests e.g. tests on running applications.

The manual review was oriented to develop a detailed data flow within the system, especially
investigating the flow of data passed from the client, which must not be trusted. Several additional
tests were performed using the following tools:

* RATS (Rough Auditing Tool for Security)
* Flawfinder

« Splint

* cppcheck

For dynamic tests a publicly available tools were used, and in addition some specific tools were
developed. As this tests relied primarily on fuzzing methods, following fuzzing tools were
engaged:

» zzuff

« Radamsa

s proxyfuzz
¢ XmlFuzz'
¢ MemFuzz’

During dynamic testing gdb (Gnu Debugger) and strace (System Trace) tools were intensely used.

1 Collection of private fuzzers, designed to generate malformed input suitable for QCG.
2 Private in memory fuzzer combined with XmlFuzz.

4. Test areas and results

1. Memory management (proper use of memory allocation and release)

No memory corruption or control flaw abuse (leading to use-after-free or double free errors) were
found.

2. Buffer operations (proper use of functions operating on stack and
heap buffers)

All buffers are handled in secure manner.

3. Counter operations (proper use of integer variables, preventing
possible overflows, underflows and improper casting)

No flaws has been found.

4. Command injection (proper data validation, character whitelisting)

Shell meta-characters are escaped when passed to system(3)-like functions.

5. SQL injection (proper data validation, character whitelisting
preserving types across data)

Proper prevention techniques are engaged. No flaws has been identified.

6. XML External Entity Attack (proper handling of XML features)

Parser does not allow to execute external entities.

7. Format string manipulations

No format strings are allowed from untrusted source.

8. Integer types casting

No improper casting found (signedness or size).

9. File manipulation (safe file handling, Time of Test Time of Use,
rigorous file permissions, temporary files management)

Files operations are conducted on file descriptors - not on paths. When file is created a least
premissive permissions are assigned.

10. Signal handling

No flaws has been found.

11. XPath/XQuery injection

No flaws has been found.

12. Transfer encryption

All QCG components use secure protocols to exchange data, i.e.: SSL3, TLS1 or GSI. Only secure
cipher suites are allowed by the server.

13. Proxy certificate authorization and authentication

Valid proxy is needed (time-valid and non-revoked) to run a job. QCG-compd does not allow to
run jobs with limited, independent or restricted proxy.

14. Server-client mutual authentication

Both client and server authenticate each other proper way.

15. Binary level hardening

Efficient hardening has been provided at binary level: stack overwrite and Fortify Source
protections.

5. Summary

There were not any really significant security flaws in tested version of QosCosGrid
software suite found. Very most of the code was written with security-in-mind and security well
practices were applied. Software has been hardened at binary level, therefore even if any part of the
software suffers overlooked implementation errors, exploitation will be extremely difficult.
Authors also provide a good understanding of grid specific security protocols and methods. We
approve QosCosGrid 2.6.1 for production use.

Bartlomiej Balcerek

QG\,\L:O’W\qﬂ} [2a

Maciej Kotowicz

6. Contact data

Postal Address:

Wroclawskie Centrum Sieciowo-Superkomputerowe
Wybrzeze Wyspianskiego 27

50-370 Wroclaw POLAND

Courier Office:
Plac Grunwaldzki 9 building D-2 PWr, room 101
50-377 Wroclaw

phone (+48 71) 320 20 79
fax (+48 71) 322 57 97

WWW: http://www.wcss.wroc.pl/english/

Email: bartol@pwr.wroc.pl, maciej.kotowicz@pwr.wroc.pl

7. References

[1].

[2].

[3].
(4.

[5].
[6].

[7].

[8].
[9].

Seacord, R. “Secure Coding in C and C++”. Upper Saddle River, NJ: Addison-Wesley,
2006 (ISBN 0321335724).

M. Dowd, J McDonald, J Schuh. The Art of Software Security Assessment: Identifying
and Preventing Software ~ Vulnerabilities. Upper Saddle River, NJ: Addison-Wesley,
2006 (ISBN 0321444426).

M. Sutton, A. Greene, P. Ammini. Fuzzing: Brute Force Vulnerability Discovery.
Addison-Wesley Professional; 1 edition (July 9, 2007) (ISBN 0321446119)

A. Taken, J. DeMott, C. Miller. Fuzzing for Software Security Testing and Quality
Assurance. Artech House Print on Demand; 1 edition (June 30, 2008)(ISBN
1596932147)

David A. Wheeler “Secure Programming for Linux and Unix HOWTO?”,
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html
Bartlomiej Balcerek, Gerard Frankowski, Agnieszka Kwiecien,, Adam Smutnicki, Marcin
Teodorczyk ,,Security best practices: applying defense-in-depth strategy to protect the
NGI”. Building a National Distributed e-Infrastructure-PL-Grid Lecture Notes in
Computer Science, 2012

S.Herzog .XML External Entity Attacks (XXE). OWASP 20.10.2010,
https://www.owasp.org/images/5/5d/ XML _Exteral Entity Attack.pdf

The METASM assembly manipulation suite. http://metasm.cr0.org/

zzuf - multi-purpose fuzzer. http://caca.zoy.org/wiki/zzuf

[10]. Radamsa. https://www.ee.oulu.fi/research/ouspg/Radamsa

