
GANGA + DIANE
+ mini-dashboard

evaluation document

1. Objectives

In this document we evaluate the DIANE/GANGA tools integrated with the mini-dashboard framework
proposed by the Dashboard team [1]. This work starts with the installation and test of each tool, and
follows with a short summary of the advantages and disadvantages offered under the scope of New
Emerging Communities, and from two different perspectives: User activities and VO management
activities.

2. GANGA

2.1 Introduction to GANGA

GANGA [2] aims to be an easy tool for job submission and management. It is built on python and
provides client command tools, a Graphical User Interface (GUI), and a WebGUI. A job in GANGA is
constructed from a set of building blocks. All jobs must specify the software to be run (application) and
the processing system (backend) to be used. Many jobs will specify an input dataset to be read and/or an
output dataset to be produced. Therefore, GANGA provides a framework for handling different types of
applications, backends and datasets, implemented as plugin classes. Pragmatically, this means that
GANGA can be used to submit jobs to the localhost where it is installed, to a local farm or to a
computing grid such as LCG/EGI, as long as the appropriate clients command tools are available to
GANGA. From the list of offered default backends, it seems that for grid infrastructures, only the gLite
middleware is available. Nevertheless, since it seems to be a very modular tool, other extensions
(middlewares) could be easily integrated.

GANGA is presently used by ATLAS and LHCb users among other collaborations. For complete details
on how GANGA is used in the framework of those collaborations, please consult [3].

2.2 GANGA Installation

From a user point of view, GANGA can be easily installed under a user home directory without any
special privileges. It only requires python 2.3.4 or greater, and needs to have access to the client
commands of the backend that it will use. For example, to be able to submit gLite jobs to LCG/EGI
infrastructure, GANGA has to be deployed on top of a (properly working) gLite (3.2) User interface.

[goncalo@ui01 ~]$ wget http://ganga.web.cern.ch/ganga/download/ganga-install

[goncalo@ui01 ~]$ python ganga-install --prefix=~/opt/ganga --extern=GangaAtlas,GangaGUI,GangaPlotter 5.5.21
[goncalo@ui01 ~]$ export PATH=/home/ingrid/csys/goncalo/Ganga/opt/ganga/install/5.5.21/bin/:$PATH

However, from a VO perspective, case the VO decides to propose this tool to their users, it seems better
that the VO offers a central and unique access point for their users to use, in order to avoid multiple
(possible unconfigured instances). However, this raises a question about a proper evaluation of the
GANGA scalability and performance degradation when used under such shared environments..

2.3 GANGA Client Command Tool

When GANGA is started for the first time, it generates the configuration file ~/.gangarc with default
definitions. The GANGA syntax is similar to python's one so if a user is already used to it, it can adapt
easily. The user can choose between a whole set of default backends to submit job, implemented as
plugin classes, and making it easily to develop and implement additional ones, as for example, other
middleware stacks.

[goncalo@ui01 ~]$ ganga
In [1]:plugins("backends")
Out[1]: ['LSF', 'Remote', 'PBS', 'Condor', 'SGE', 'Batch', 'LCG', 'Local', 'Interactive']

In the example bellow, GANGA is used to submit a simple “Hello World” job to the locahost where it is
installed, which is defined as the default backend.

In [10]:j = Job(application=Executable(exe='/bin/echo',args=['Hello World']))

In [11]:j.submit()
Ganga.GPIDev.Lib.Job : INFO submitting job 40
Ganga.GPIDev.Lib.Job : INFO job 40 status changed to "submitting"
Ganga.GPIDev.Adapters : INFO submitting job 40 to Local backend
Ganga.GPIDev.Lib.Job : INFO job 40 status changed to "submitted"
Ganga.GPIDev.Lib.Job : INFO job 40 status changed to "submitted"
Out[11]: 1

In [12]:jobs
Out[12]:
Registry Slice: jobs (1 objects)

 fqid | status | name | subjobs | application | backend | backend.actualCE

 40 | running | | | Executable | Local | ui01.ncg.ingrid.pt
Ganga.GPIDev.Lib.Job : INFO job 40 status changed to "running"

In [13]:jobs
Out[13]:
Registry Slice: jobs (1 objects)

 fqid | status | name | subjobs | application | backend | backend.actualCE

 40 | completed | | | Executable | Local | ui01.ncg.ingrid.pt
Ganga.GPIDev.Lib.Job : INFO job 40 status changed to "completed"

In [14]:outfile = file(j.outputdir+'stdout')

In [15]:print outfile.read()
Hello World

In [16]:j.peek('stdout')

In [17]:!cat $j.outputdir/stdout
Hello World

In the following example, GANGA is used to submit a job to EGI infrastructure. This is only possible
because GANGA has been installed on top of a gLite 3.2 User interface

In [2]:j = Job(application=Executable(exe='/bin/echo',args=['Hello World']))

In [3]:config['LCG']['GLITE_ENABLE'] = True

In [4]:j=Job(backend=LCG())

In [5]:j.backend.middleware = 'GLITE'

In [6]:j.submit()
Ganga.GPIDev.Lib.Job : INFO submitting job 36
Ganga.GPIDev.Lib.Job : INFO job 36 status changed to "submitting"
Ganga.GPIDev.Adapters : INFO submitting job 36 to LCG backend
Ganga.GPIDev.Lib.Job : INFO job 36 status changed to "submitted"
Ganga.GPIDev.Lib.Job : INFO job 36 status changed to "submitted"
Out[6]: 1

In [7]:jobs
Out[7]:
Registry Slice: jobs (1 objects)

 fqid | status | name | subjobs | application | backend | backend.actualCE

 36 | submitted | | | Executable | LCG |ce131.cern.ch:2119/jobmanager-lcglsf-grid_2nh
In [8]:jobs
Out[8]:
Registry Slice: jobs (1 objects)

 fqid | status | name | subjobs | application | backend | backend.actualCE

 36 | running | | | Executable | LCG |ce131.cern.ch:2119/jobmanager-lcglsf-grid_2nh
Ganga.GPIDev.Lib.Job : INFO job 36 status changed to "running"

In [12]:jobs
Out[12]:
Registry Slice: jobs (1 objects)

 fqid | status | name | subjobs | application | backend | backend.actualCE

 36 | completed | | | Executable | LCG |ce131.cern.ch:2119/jobmanager-lcglsf-grid_2nh
Ganga.GPIDev.Lib.Job : INFO job 36 status changed to "completed"

Complete instructions on how to use GANGA client tools please consult [4]

2.4 GANGA GUI and WebGUI

GANGA presents a QT3 based graphical user interface (GUI) and a WebGUI.

GANGA GUI is the GUI (Graphical User Interface) front-end to GANGA allowing users not comfort-
able working at the console the choice to work in a graphical environment. It is developed with PyQt
(Python-bindings to the Qt graphical toolkit) and is built on top of the GANGA GPI (GANGA Public
Interface). GANGA GUI not only allows the user to build a GANGA job, submit it (i.e. execute it) lo-
cally or to a selection of distributed systems (e.g. batch systems, the Grid) and subsequently retrieve the
results, it also provides a customisable job monitoring window that keeps track of running jobs and their
status, a job management facility to organise past jobs and quick-scripting tools to run favourite code
snippets all within an integrated graphical environment.

The evaluation of the WebGUI functionalities is an ongoing work.

For further details on how to use the GUI, please consult [5].

2.5 GANGA Analysis and Evaluation

GANGA is a tool putting the emphasis on users regarding job management. It hides the difficulties of
using a certain middleware stack, making the job submission a more transparent process. It is highly
extensible making it easy to incorporate new middleware stacks, and offers a nice Graphical User
Interface which decreases the user learning curve to use the VO infrastructure. On the other hand, it
introduces a new python-like syntax (in the client command tools), and represents an additional layer of

http://www.trolltech.com/products/qt/index.html
http://www.riverbankcomputing.co.uk/pyqt/index.php
http://ganga.web.cern.ch/ganga/

software increasing an already complex system. It is also not completely clear if GANGA offers the
exact same functionalities of the bellow backends such as, for example, submission of MPI jobs.

From a VO perspective, it would be better if a central installation is offered to all users, since the correct
usage of the tool seems to be dependent of how the user itself configures it. This raises a question about
the evaluation of scalability and performance degradation of GANGA.

3. DIANE

3.1 Introduction to DIANE

DIANE [6] is a lightweight job execution control framework for parallel scientific applications aiming
to improve the reliability and efficiency of job execution by providing automatic load balancing, fine-
grained scheduling and failure recovery. The backbone of DIANE communication model is based on
master-worker architecture. This approach is also known as agent-based computing or pilot jobs in
which a set of worker agents controls the resources. The resource allocation is independent from the
application execution control and therefore may be easily adapted to various use cases. DIANE uses the
GANGA to allocate resources by sending worker agent jobs, hence the system supports a large of
computing backends: LSF, PBS, SGE, Condor, LCG/EGI Grid.

As opposed to standard message passing libraries such as MPI, the DIANE framework takes care of all
synchronization, communication and workflow management details on behalf of the application. The
execution of a job is fully controlled by the framework which decides when and where the tasks are
executed. Thus the existing applications are very simple to interface as python plugin modules.
Application plugin modules contain only the essential code directly related to the application itself
without bothering about networking details.

3.2 DIANE installation

DIANE [6,7] may be installed under a user home directory without any special privileges. Since it
automatically pulls, installs and configures GANGA, the same requirements apply: python 2.3.4 or
greater, and the need to access to backend client commands that the system will use. However, DIANE
execution includes an additional network configuration step: The master thread has to allow inbound
connections in a dedicated TCP port (20500 in the example bellow).

[goncalo@ui01 Diane]$ wget http://cern.ch/diane/packages/diane-install
[goncalo@ui01 Diane]$ python diane-install 2.2
[goncalo@ui01 Diane]$ /home/ingrid/csys/goncalo/diane/install/2.2/bin/diane-env -d bash
[goncalo@ui01 Diane]$ export PATH=/home/ingrid/csys/goncalo/diane/ganga/install/5.5.2/bin:$PATH
[goncalo@ui01 Diane]$ export ORBendPoint=giop:tcp::20500

3.2 DIANE client command tools

In the following example we will try to demonstrate how a user can benefit from the DIANE framework
through their command client tools. Suppose that a user has a hello script that looks like:

[goncalo@ui01 Diane]$ cat hello
#!/usr/bin/env bash
rm -f message.out
echo hello $* > message.out
echo "I said hello $* and saved it in message.out"

If the user wants to run 20 times this "hello" executable script, changing its arguments every time, he
should define the work to be done using a run file which is a simple python file:

[goncalo@ui01 Diane]$ cat hello.run
tell DIANE that we are just running executables
the ExecutableApplication module is a standard DIANE test application
from diane_test_applications import ExecutableApplication as application

the run function is called when the master is started
input.data stands for run parameters
def run(input,config):

d = input.data.task_defaults # this is just a convenience shortcut
all tasks will share the default parameters (unless set otherwise in individual task)
d.input_files = ['hello']
d.output_files = ['message.out']
d.executable = 'hello'

here are tasks differing by arguments to the executable
for i in range(20):

t = input.data.newTask()
t.args = [str(i)]

At this point, the DIANE master is ready to be started. The master will start in its own run directory
typically located in ~/diane/runs/nnn. The default location may be changed with
$DIANE_USER_WORKSPACE environment variable.

[goncalo@ui01 Diane]$ diane-run hello.run &

[1] 6791
2011-01-20 18:37:36,462: run directory: /home/ingrid/csys/goncalo/diane/runs/0004
2011-01-20 18:37:36,462: this stderr and stdout is stored in:
/home/ingrid/csys/goncalo/diane/runs/0004/master.stdouterr
2011-01-20 18:37:36,463: full log is stored in: /home/ingrid/csys/goncalo/diane/runs/0004/master.log
2011-01-20 18:37:36,541: new_task_created: tid=1 []
(...)
2011-01-20 18:37:36,560: new_task_created: tid=20 []

Once the master is up and running, the user can start worker agents directly in GANGA, submitted as
normal jobs. Each of the worker agent jobs can process multiple diane tasks. If you have many worker
agent jobs the run completion time will be shorter. If you have less worker agent jobs or if some of the
worker jobs crash for some reason than the only noticeable effect will be the slowdown of the run but
everything will continue to run without you intervention. You may also add new worker agents at any
time.

The following command will run 2 worker agents locally on your computer. After a while, the
processing should be terminated and the user should be ready to see the results. All results are stored by
the master in the run directory (this behavior may be customized and depends on the application plugins
).

[goncalo@ui01 Diane]$ ganga LocalSubmitter.py --diane-worker-number=2
*** Welcome to Ganga ***
Version: Ganga-5-5-2
(...)
**
DIANE Ganga Submitter
INFO: the workers will connect to the master specified by /home/ingrid/csys/goncalo/diane/runs/0004/MasterOID
2011-01-20 18:37:56,331: worker 1 has been initialized and is now ready
2011-01-20 18:37:56,355: worker 2 has been initialized and is now ready
2011-01-20 18:37:56,711: task 1 completed (application_label='')
(...)
2011-01-20 18:37:59,242: task 20 completed (application_label='')
[1]+ Done diane-run hello.run

Once the tasks are completed, the user can access to the job outputs stored in the master working
directory:

goncalo@ui01 Diane]$ ll /home/ingrid/csys/goncalo/diane/runs/0004/output_files/
total 80
drwxr-xr-x 2 goncalo csys 4096 Jan 20 18:37 00001
(...)
drwxr-xr-x 2 goncalo csys 4096 Jan 20 18:37 00020

[goncalo@ui01 Diane]$ ll /home/ingrid/csys/goncalo/diane/runs/0004/output_files/00001/
total 8
-rw-r--r-- 1 goncalo csys 8 Jan 20 18:37 message.out
-rw-r--r-- 1 goncalo csys 0 Jan 20 18:37 _stderr
-rw-r--r-- 1 goncalo csys 43 Jan 20 18:37 _stdout

To submit to a different backend, a different plugin must be invoked when starting the working agents in
ganga. For example, to submit to LCG/EGI infrastructure, one should use:

[goncalo@ui01 Diane]$ diane-run hello.run &

[goncalo@ui01 Diane]$ ganga LCGSubmitter.py –diane-worker-number=2

For more information on how to use GANGA, please consult [8].

3.3 DIANE Analysis and Evaluation

DIANE has showed to be valuable tool enabling the successful execution of large numbers of
production jobs. From a VO perspective, this seems to be an important added value if a production
activity is something foreseen by the VO.

However, from the user point of view, it offers a decoupled framework to the user where the startup of
the master server and working instances is delegated to the user, which has to do it in two separate steps.
Also, to use this framework, the user has to know the concept of the pilot framework, understand it
benefits, and understand what the master, the tasks and the agents concept. There is more to it than only
"pushing a button", which is what the majority of the newly users will want. Moreover, since DIANE
implements a pilot approach (although without the authentication problems seen in the WLCG context),
the VO infrastructure provider will still need to approve the conditions in which their resources will be
used.

It is also not completely clear which backend submitter plugins are available to use as arguments to
GANGA, and what are their capabilities. Documentation on how to produce new plugins should be in
place. We also have not seen any reference if it is possible to use the GANGA GUI under this
framework (to submit and control the agents).

4. Mini-Dashboards

4.1 Mini-Dashboard Introduction

The mini-Dashboard monitoring service provides a web-based interface where users may easily keep
track of GANGA [10] and DIANE [11] jobs. The mini-Dashboard is a service which runs a simple
mysql DB at the backend (as opposed to Oracle DB used by HEP VOs) but uses the same web interface
technology as HEP VOs. This web2.0 technology (hBrowseFramework) allows easily customizing and
expanding the views via a settings file. For some settings (e.g. selection and ordering of columns) this
may be done even without deploying a separate service instance - so with very little overhead from a
VO.

The current web interface of mini-Dashboard offered @ CERN has not been extensively configured and
it is quite basic. It is meant to grow together with the new user communities, by integrating their
customizations and contributions if they are of general interest. There are many levels of customization
of this system you may achieve for a VO, depending on their needs and also effort they want to spend on
it. With some customization effort, the VO users may consult job statuses and other information (which
may be easily added via a configuration file) via graphical summaries and charts. In the development
plan, the mini-dashboard supporters plan to add charts such as status pie-charts, but they prefer that
further development requirement come as external contributions from interested parties.

The VO may also desire to install their own monitoring instance, customizing and configure it according
to their own specific needs. There are some mini-dashboard instances in production (for ATLAS)
pointed by the mini-dashboard developers to understand the present functionalities and customization
levels in place. However, every time I’ve tried to access the system, it was unavailable.

4.2 Setup GANGA/DIANE to report to the Mini-Dashboards

Report of jobs/tasks to the mini-dashboards is done using the ActiveMQ messaging system. While
DIANE sents messages automatically, GANGA client command tools must be configured according to:

.gangarc:
[MonitoringServices]
Executable/* = Ganga.Lib.MonitoringServices.MSGMS.MSGMS

[MSGMS]
server = gridmsg101.cern.ch
port = 6163

4.3 Mini-Dashboards Analysis and Evaluation

Presently, the Mini-Dashboard instance offered at CERN is a limited framework to users: a user can
only check the jobs / tasks he sent, and access their status. The user can not check where the jobs are
running, nor check their associated data as charts (a function which seems to exist but not working).
However, according to the developers, this instance was only install as a “proof of concept” and can be
customized via hBrowseFramework, with inputs / requirements/ effort from the VO, to show additional
information, and aggregate under a graphical view (charts, pie charts) information which is found
relevant for the users. According to the developers, there are already production instances used by some
communities (ATLAS) with highly configured views, but it was not possible to check them due to the
unavailability of those services.

From a VO perspective, one still has to understand the effort on the customization of a specific VO
request, and on the operation of this mini-dashboards, if the VO decides to deploy a separate instance. It
was also not clear if a VO responsible could have an historical integrated view of the usage (active jobs,
pending jobs, failed jobs, etc). Finally, it seems the platform is very user centered, and does not offer
many additional added values from the VO Management point of view, which is one of the final aims of
this work.

5. Conclusions

GANGA and DIANE, working as standalone tools, hide the most complex aspects of the grid
environment, and decrease the slope of what used to be a time consuming learning curve for users. VOs
could enhance this further offering to their users a central installation that they can use; assuming the
responsibility of the operation of the system instead of delegating it to the user side. Although with some
restrictions that each VO must analyze, these tools seems appropriate to process large amounts of
production jobs with high reliability and success rates, and boost user access to grid resources.

The mini-dashboard framework is very user centered, providing a solution for monitoring of tasks and
jobs for a VO. From the instance tested at CERN, it was not possible to understand how customized and
configurable this system can be, and therefore inferred the advantages for VO users. However, accord-
ing to the supporters, there is great margin of progress and enhancement if VO communities also decide
to deliver some degree of commitment and effort on this work.

However, the following problem was identified: The EGI DoW says: "To simplify access to the
infrastructure and to promote collaboration within the VO, EGI.eu will (...) operate access to

dashboard infrastructure where the status of the resource fabric being used by a particular VO will be
reported upon. Both the portal and dashboard offered by this activity will be basic, but they will provide
a core framework around which the particular community can, through their own work, customize their
web presence and VO specific monitoring of the infrastructure. The dashboard infrastructure will be
based on the work being undertaken in Section 1.3.3.4.3.1: TSA3.2.1 Dashboards." This particular
solution doesn't seem to fullfill the requirement "a dashboard infrastructure where the
status of the resource fabric being used by a particular VO will be reported upon", and "... customize
their web presence and VO specific monitoring of the infrastructure". I do not see how and where the
previous framework does offer those functionalities. It seems that the people who wrote that paragraph
had in mind the same kind of solution as used for HUCS, but much simpler and naive. However, it
seems ORACLE is preventing that from happening. There is still missing a mechanism where emerging
user communities can have an integrated view of the state of their infrastructure.

6. Summary table

User VO

Pros Cons Pros Cons

GANGA 1./ Easy installation
2./ Extensible for
integration of other
backends
3./ Easy command
tools (if you are used
to python)
4./ Easy GUI with
the capacity to re-use
jobs and job
templates.

1./ One more
abstraction software
layer on top of the
middleware
2./ Effort on learning a
new syntax language
(if a user is not used to
python)
3./ Not clear if it
supports all
middleware
functionalities (ex:
MPI job submissions)

1./ The VO may
want to offer a
central installation
to be used by all
users
2./ GANGA GUI
may increase the
user learning curve
on using the VO
infrastructure

1./ If not installed
centrally, the right
use of the tool
depends on how
the user configures
it
2./ A central
installation of the
tool opens
questions about
GANGA
scalability and
performance
degradation

DIANE 1./ Easy installation
2./ Increase
reliability and
success rate for job
management

1./ Users need to
deeply understand the
framework since it is
up to the user to start
the master thread and
the working agents
separately
2./ Unknown if
GANGA GUI can be
used to start and
control the agents
3./ Missing
documentation
regarding the GANGA
submitter plugins

1./ Proper for VO
production needs
2./ The VO may
want to offer a
central installation
to be used by all
users

1./ If not installed
centrally, the right
use of the tool
depends on how it
is configured
locally
2./ Pilot framework
must be agreed by
the VO
infrastructure
providers

Mini- 1./ Possibility to have 1./ The current instance 1./ VOs could install 1./ Needs to

Dashboards an aggregated /
integrated graphical
customized view of
individual user usage
at a given time

at CERN offers very
limited functionalities.

their own instance,
customize it for VO
specific needs.

understand the
effort on operation
and customizations
2./ Not able to
offer an historical
view in terms of
integrated usage
metrics
3./ Platform is very
user centered, and
does not offer
many additional
added value from
the VO
Management point
of view

6. References

[1] https://twiki.cern.ch/twiki/bin/view/ArdaGrid/EGIIntroductoryPackage
[2] http://ganga.web.cern.ch/ganga/
[3]http://www.google.pt/url?sa=t&source=web&cd=4&ved=0CCkQFjAD&url=http%3A%2F
%2Fhomepages.physik.uni-muenchen.de%2F~Johannes.Elmsheuser%2Fdocs
%2Fchep10.pdf&ei=sDpFTauHBcXa4Aai-Yw2&usg=AFQjCNEmHgoSZFlt3UIGWRTSS8vHlZsPgA
[4] http://ganga.web.cern.ch/ganga/user/html/GangaIntroduction/
[5] http://ganga.web.cern.ch/ganga/user/html/GUI_User_Manual/
[6] http://it-proj-diane.web.cern.ch/it-proj-diane/
[7] http://groups.google.com/group/diane-announcements/feed/rss_v2_0_msgs.xml
[8] https://twiki.cern.ch/twiki/bin/view/ArdaGrid/DIANETutorial#DIANE_Tutorial
[9] https://twiki.cern.ch/twiki/bin/view/ArdaGrid/DIANEQuestionsAndAnswers
[10] http://gangamon.cern.ch/ganga
[11] http://dianemon.cern.ch/diane

http://dianemon.cern.ch/diane
http://gangamon.cern.ch/ganga
https://twiki.cern.ch/twiki/bin/view/ArdaGrid/DIANEQuestionsAndAnswers
https://twiki.cern.ch/twiki/bin/view/ArdaGrid/DIANETutorial#DIANE_Tutorial
http://groups.google.com/group/diane-announcements/feed/rss_v2_0_msgs.xml
http://ganga.web.cern.ch/ganga/user/html/GUI_User_Manual/
http://ganga.web.cern.ch/ganga/user/html/GangaIntroduction/
http://ganga.web.cern.ch/ganga/

